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A multiblock approach to the solution of steady-state Navier–Stokes equations has been approved and an
original procedure of mean-mass temperature correction has been proposed for calculation of separation flow
and heat exchange an in-line bank of round tubes.

For years the designing of heat-exchange apparatus and investigation of physical processes occurring in them
have attracted the attention of specialists in thermal physics and heat engineering [1, 2]. It should be noted that up to
now the experimental and semiempirical integral methods based on simple criteria relations for the heat-transfer coef-
ficient have been prevailing in this field of convective heat transfer.

A few computational works carried out at the initial stage of development of numerical modeling of hydrody-
namics and heat exchange (CFD) were generalized fifteen years ago in monograph [3]. Since then, no investigation of
such a scale has appeared despite the impressive progress made in the field of computational technics associated, first
of all, with the appearance and rapid development of personal computers and the improvement of computational tech-
niques (multiblock, in particular, [4]) realized in universal and specialized packets of applied programs or in codes, in-
cluding "heavy" packets developed for hydrodynamic and thermophysical purposes: FLUENT, Star CD, CFX, and
others.

The calculation of a heat-exchange apparatus representing an ordered bank of heated elements identical in
shape is based on the assumption that flows of identical structure are formed in the repetitive isolated modules, of
which, as of boxes, the bank is composed (see, for example, [3]). Periodic boundary conditions are set at the flow
boundaries of each of the modules. It is assumed that the velocity profiles are the same in the geometrically similar
cross sections. This formulation of the problem is fully suited for multirow heat exchangers, especially for the ele-
ments positioned deep in the bank.

The genesis of numerical modeling of viscous fluid flow about elements periodic in distance is closely related
to the evolution of numerical methods of solving Navier–Stokes equations. At the initial stage of development of nu-
merical modeling of hydrodynamics and heat exchange, performed with the personal computers then available charac-
terized by low storage capacity and a low speed of response, the initial equations were written, for economy of
computational resources, in transformed variables: vorticity–stream function. For the same purpose, the problems with
limited dimensions of the computational regions, in particular the problems with periodic boundary conditions, such as
problems on viscous fluid motion in a channel with bulges periodic in distance, were considered [5]. It should be
noted that the use of the stream function as a the dependent variable made the solution of the problem much simpler
because, in this formulation the fluid flow rate in the flow section was fixed automatically [6].

In the 1970s, the progress that had been made in computational resources was favorable for wide approbation
of semiempirical differential models of turbulence, in particular, the two-parameter dissipative model. Because of the
difficulties associated with the formulation of correct boundary conditions in transformed variables, pressure and veloc-
ity components had come into use as dependent variables. However, there arose a problem characteristic of the calcu-
lation of channel-type flows and associated with the determination of the pressure difference corresponding to the
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prescribed fluid flow rate. The solution of the heat problem presents analogous difficulties: heating of the fluid in a
channel is enhanced with increase in the number of heated elements periodic in distance, and this process is nonlinear.
The indicated problems have been partially resolved in [7–9], where problems on convective heat exchange in laminar
longitudinal and transverse flows about blocks of thin and thick plates were considered.

In subsequent investigations [10–12], the methodology of solving problems with periodic boundary conditions
has been developed as applied to tube heat exchangers, container transport, and instrument engineering. Of special in-
terest is the proposed interpretation of the iteration procedure of correction of the pressure gradient related to the pre-
scribed fluid flow rate. Until the present time this procedure has not experienced substantial changes and has been
formalized in the majority of applied-program packets developed. However, the heat problem has not been solved ade-
quately. In [11], it is proposed to determine the dimensionless temperature with the use of the pressure difference be-
tween the neighboring vertical rows of tubes, which makes it possible to compare heat transfer in tubes of different
various arrangement only qualitatively. The approach proposed in [8] is based on the construction of an ordinary dif-
ferential equation for the mean-mass temperature gradient and presents great difficulties when it is used for multiblock
curvilinear grid structures.

The present work is, on the whole, methodological in character. In it, the aim is to propose a procedure of
mean-mass temperature correction, approve a multiblock computational algorithm by the example of modeling of lami-
nar flow and heat exchange in an in-line bank of roundtubes, and investigate the influence of the viscosity on the
characteristics of the flow and heat exchange.

Features of the Formulation of the Procedure of Mean-Mass Temperature Correction. Patankar et al. [8]
argue that, in the case where the temperature of the walls within a region is constant (see. e.g., Fig. 1a), the periodic
component of the temperature field can be separated using the expression

θ = 
T (r) − Tw

T
∗
 (x) − Tw

 ,   in this case  θ (x) = θ (x + L) = θ (x + 2L)... , (1)

where

T
∗
 (x) = 

∫ 
A

T (r) ρ v⋅dA

∫ 
A

 ρv⋅dA
 , (2)

and the integrals should be taken over the region cross section normal to the direction of the main flow. In the case
where a reverse flow is absent, the quantity T∗ (x) represents the mean-mass temperature. The distribution of this quan-
tity over the region is not known in advance and should be determined using an iteration procedure in the process of
solution.

For simplicity, we will assume that the distribution of T∗ (x) over the region is linear, i.e.,

T
∗
 (x) = Tinlet

∗
 + βTx . (3)

Fig. 1. Scheme of the computational region (a) and multiblock computational
grid (b).
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Let us also assume that reverse-flow regions are absent in the inlet cross section or they are small; therefore, it may
be assumed that Tinlet

∗  = Tinlet
b.t , where

Tinlet
b.t

 = 

∫ 
inlet

 T (r) ρv⋅dA

∫ 
inlet

 ρv⋅dA

is the inlet mean-mass temperature.
To determine the unknown mean-mass temperature gradient, we use the energy equation written in the form

∇⋅ (ρvT) = α∇ 2
T .

Integrating it over the entire computational region, we obtain

   ∫ 
inlet

 Tρv⋅dS +  ∫ 
outlet

 Tρv⋅dS =  ∫ 
w

 α∇ T⋅dS ,

where the vector dS is directed along the outer normal to the boundary of the region, or

  − ∫ 
inlet

 Tρv⋅dA +  ∫ 
outlet

 Tρv⋅dA = − ∫ 
w

 α 
∂T

∂n
 ds ,

here, the derivative on the right side is taken with respect to the normal to the wall.
Taking into account (3), we write

− Tinlet
b.t

  ∫ 
inlet

 ρv⋅dA + (Tinlet
b.t

 + βTL)  ∫ 
outlet

 ρv⋅dA = − ∫ 
w

α 
∂T

∂n
 ds .

Since, because of the periodicity of the flow,

  ∫ 
inlet

 ρv⋅dA =  ∫ 
outlet

 ρv⋅dA ,

the expression for βT takes the form

βT = − 

∫ 
w

α 
∂T
∂n

 ds

L  ∫ 
inlet

 ρv⋅dA
 . (4)

In the process of iteration solution of the problem, in addition to the determination of the mean-mass tempera-
ture gradient, it is necessary to maintain a predetermined temperature of the incoming flow (inlet mean-mass tempera-
ture).

If the inlet mean-mass temperature is equal to the predetermined temperature, the quantity

  ∫ 
inlet

 θ (r) ρ v⋅dA  = 1 .

Otherwise, the dimensionless-temperature field is corrected as

θnew
 (r) = 

θold
 (r)

  ∫ 
inlet

 θ (r)  ρv⋅dA
 .
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Formulation of the Problem. Two-dimensional motion of an incompressible viscous fluid and convective heat
exchange in a lane bank of cylindrical tubes of round cross section arranged with longitudinal and transverse steps l
and h are numerically analyzed. The diameter of the cylinder D is taken as the linear scale and the mean-mass velocity
U is taken as the characteristic velocity. An ABCDEF computational module is separated. Periodic boundary conditions
are set at its AB and EF boundaries and symmetry conditions are set at the AF and BE boundaries. The adhesion con-
ditions are fulfilled on the heated isothermal CD wall of the cylinder about which fluid flows. The heat problem and
the dynamic problem are solved separately using the velocity fields calculated in advance. The Reynolds number is var-
ied from 40 to 103 and the Prandtl number is varied from 0.7 to 4000. The geometric dimensions of the computational
module are taken as l = 2 and h = 1. The wall of the cylinder is assumed to be isothermal and heated (it is equal to
1.27 in the dimensionless form). The mean-mass temperature in the inlet cross section is taken as the characteristic tem-
perature (it is taken to be 293 K in the dimensional form; in this case, the overheating of the tube is 100o).

A multiblock grid (Fig. 1b) is used. It consists of two different-scale grids having a different structure: a
Cartesian grid (with uniform pitches in the transverse direction equal to 0.02) covering the entire computational region
and a polar grid (with a uniform pitch along the peripheral coordinate and a nonuniform pitch along the radial coor-
dinate) extending a distance of 0.15 from the surface of the cylinder. The near-wall pitch is taken to be 0.0001. The
number of cells in the peripheral direction of the polar grid is varied from 40 to 90.

Interpretation of the Multiblock Computational Algorithm. Laminar flow and heat exchange in the compu-
tational module separated are described based on the finite-volume solution of the Navier–Stokes equations and the en-
ergy equation by the factorized implicit method of global iterations constructed within the framework of the concept
of splitting by physical processes [13]. This original method in completed form is described in detail for multiblock
grids in [14].

The core of the computational algorithm is the known SIMPLEC procedure of pressure correction. This two-
step procedure of the "predictor–corrector" type is meant for determining the Cartesian velocity and pressure compo-
nents. The original features of the finite-volume algorithm developed in the late 1980s are associated with (a)
representation of the initial equations in increments of dependent variables, (b) approximation of convective terms in
the explicit side of the momentum equation by the univariate Leonard upwind scheme with quadratic interpolation, (c)
approximation of the convective terms in the implicit side by the upwind scheme with one-sided differences, (d) intro-
duction of artificial diffusion into the implicit side for damping of the high-frequency oscillations with a coefficient of
increasing the kinematic viscosity OTL (>1), (e) use of the Rhie–Chow monotonizer in the block of pressure correc-
tion because of the centered computational template with an empirically determined coefficient of 0.1, and (f) solution
of the difference equations by the method of incomplete matrix factorization in the Stone version (SIP).

Construction of a multiblock algorithm is associated with numerical modeling of vortex flows in multiply con-
nected regions within the framework of the approach based on the decomposition of a computational region of com-
plex geometry (Fig. 1) into fragments followed by use of intersecting grids of simple topology. The parameters in the
region of intersection of grids are determined using the procedure of linear interpolation [15]. The multiblock compu-
tational technoloques developed initially for the calculation of a two-dimensional flow about bodies with vortex cells
have been verified (see, e.g., [16, 17]) and extended to the case of steady-state, three-dimensional turbulent flows with
flow separation [4].

A feature of the formulation of the problem under consideration is that periodic components are separated
from the pressure and temperature fields [3]. It should be noted that these periodic components are used as dependent
variables in the construction of the equation for pressure and energy correction. In addition to the successive iteration
solution of the Navier–Stokes equations and the equation for pressure correction derived from the continuity equation,
additional iteration cycles are introduced into the procedure of global iterations. The pressure difference between the
inlet and outlet cross sections is determined with the use of the known iteration procedure of pressure-gradient correc-
tion based on the constancy of the flow rate [13], and the heat problem is solved using the methods of mean-mass
temperature correction described in the present work.

The relaxation coefficients are taken to be 0.5, 0.8, and 0.9 in the calculations the increments of the velocity
components, the pressure corrections, and the temperature increment, respectively. The E factor is taken, as ever, to be
2.5 in the calculation of the dynamic problem and 100 in the calculation of the heat problem [13, 14] to provide high
convergence in the latter case.
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Testing of the Computational Algorithm. Our main concern in the present work was the verification of the
multiblock algorithm developed. For this purpose, the calculated local heat flows on the surface of a tube in the in-line
bank selected were compared to the calculated [3] and experimental [2] data obtained at close regime parameters. The
wholly satisfactory agreement between the data presented in Fig. 2 at low and high Reynolds numbers points to the
acceptability of the approach developed, including the case of laminar flow of a medium such as oil.

It should be noted that the distribution of local heat flows in the separation zone between the cylinders
changes abruptly when the Reynolds number increases from 40 to 60, and the local minimum of heat transfer is po-
sitioned at the point of flow separation. It is notable that the influence of the Prandtl number is not very marked,
which lends support to the validity of the comparison of the calculation data on heat transfer obtained for air in [3]
with the experimental data obtained for oil media in [2].

Investigation of the Viscosity Effect. Some of the calculation data on the influence of Re on the structure of
the separation flow about a cylinder from the in-line bank under consideration on the local and integral characteristics
of the drag and heat exchange are presented in Figs. 3–5. The working medium is air (Pr = 0.73) in all the cases.

As noted in a number of works (see, e.g., [14, 15]), an increase in the Reynolds number in a flow about a
cylinder leads to a progressing intensification of the separation flow, an increase in the dimension of the circulation
zone in the near wake, and a decrease in the drag. In the case of flow about a cylinder positioned in a in-line bank,
in which the tubes are arranged fairly closely together, as in the case under consideration (h = l/2 = 1), undoubtedly
the blocking of the flow section exerts a great action on the formation of the flow structure, i.e., the flow in the com-
putational module is of the channel type. However, as is seen from Fig. 3, the characteristic features of the influence
of Re, noted for an unbounded flow, remain in the case of fluid motion in a tube bank too. Even though the blocking
effect, appearing when the separation zone occupies the entire space between the cylinders, is observed at even R =
40, the transverse dimension of the zone and the velocity of the reverse flow increase with increase in the Reynolds
number. It should be noted that the largest changes in the vortex structure are observed at small and moderate Re,
whereas in the ranges of high (of the order of 500 and higher) Re the dimensions of the circulation region stabilize.

It is important to determine the interrelation between the evolution of the vortex structure and the changes in
the temperature field caused by an increase in Re. As the Reynolds number increases, the core of a large-scale vortex
is gradually heated, which serves to decrease heat transfer in the separation zone. At the same time, in the core of the
flow part of the module the temperature field becomes layered in character and somewhat cooled in the central zone
(the temperature is approximately 5% lower than the mean-mass temperature), and the temperature layer near the part
of the cylinder surface about which fluid flows without separation becomes gradually thinner, which increases heat
transfer in this region.

Fig. 2. Distribution of the local Nusselt number related to the contour-average
Nusselt number over the surface of a tube in the in-line bank for laminar
flows with low (a) and high (b) Reynolds numbers. Calculation curves: 1) Re
= 40 and Pr = 0.73; 2) 60 and 0.73; 3) 60 and 4000; 4) 103 and 321; 5)
103 and 0.73 [3]; experimental data: 6) Re = 57 and Pr = 3947; 7) 1140 and
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In interpreting the pressure profiles (Fig. 4a), all were referred to the front critical point of the cylinder (p =
0). First of all, the large pressure differences between the back and front critical points at law Reynolds numbers,
caused by the large pressure gradients in the module selected, have engaged our attention. In this case, the pressure is
minimum in the region of the flow-separation point and is maximum in the zone of flow attachment. As Re increases,
the indicated pressure extrema approach each other, since, as suggested in Fig. 3, the dimensions of the separation

Fig. 3. Evolution of the temperature fields (the isotherms are drawn with a
step of 0.02) and the pattern of flow (the lines of flow are shown by heavy
lines) about a cylinder in the tube bank with increase in the Reynolds number:
a) Re = 40; b) 100; c) 250; d) 500.

Fig. 4. Evolution of the surface distributions of the pressure (a), friction stress
(b), and local Nusselt number related to the perimeter-average Num (c) with
increase in the Reynolds number: 1) Re = 40; 2) 100; 3) 250; 4) 500.
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zone increase and the separation and attachment points move sideways from the symmetry plane of the cylinder. At
high Reynolds numbers, the differences between the extremum values of the pressure also decrease and the profiles in
the separation zone smooth out, i.e., the separation zone becomes isobaric.

An analysis of the surface distributions of the friction stress (Fig. 4b) confirms the earlier assumption that the
intensification of the flow in the separation zone increases with increase in Re and shows that the extremum values of
the friction in the zones of separation flow and flow without separation about the cylinder approach each other.

The evolution of the profiles of relative local heat transfer from the cylinder (Fig. 4c) points to the following
tendency: the level of heat transfer in the separation zone decreases monotonically (in this case, the local minimum
moves sideways from the symmetry plane) with gradual increase in the maximum of heat transfer in the zone of flow
without separation. The reasons for such behavior of heat transfer were discussed above when the temperature fields
were analyzed (Fig. 3). Even though the above-mentioned processes of change in the local heat transfer are opposite
in character, they compensate each other and, in doing so, cause weak intensification of heat exchange (see Table 1).
An opposite tendency in the behavior of Num(Re) was noted in [3], which is apparently due to the insufficiently cor-
rect calculation of the temperature fields.

As is seen from Fig. 5, the total force loads on the circular cylinder in the tube bank behave with increase in
Re in the same manner as in the case of a free space [14]. As already mentioned, the blocking effect characteristic of
a flow about a in-line bank of tubes progresses with increase in Re, which leads to a gradual decrease in the drag. A
comparison of the drag coefficients (see Table 1) and drag components calculated in the present work and in [3]
shows that they are in close agreement, which can be considered as an additional guide for the verification of the mul-
tiblock algorithm developed.

This work was carried out with financial support from the Russian Foundation for Basic Research (projects
02-02-81035 and 02-01-01160).

NOTATION

Cx, Cxp, and Cxf, coefficients of frontal resistance, pressure resistance, and friction resistance, respectively; cp,
heat capacity at a constant pressure, kJ/(kg⋅K); D, diameter of the cylinder, m; dS and dA, vectors of elemental areas
along the boundaries of the computational module and at the flow boundaries (dS coincides with the direction of the

Fig. 5. Dependence of the coefficients of pressure resistance Cxp and friction
resistance Cfx of a tube in the in-line bank on Re: 1) present work; 2) [3].

TABLE 1. Dependence of the Nusselt Number Averaged over the Perimeter of the Tube and the Drag Coefficient of the
Cylinder on the Reynolds Number

Re 40 100 250 500 1000

Num 3.351 3.415 3.646 3.823 4.42

Cx 1.48 0.635 0.279 0.142 0.117

Cx  [3] 1.44 0.656 0.296 0.140 –
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outer normal), m; E, relaxation parameter (E factor); f, friction stress related to the double kinetic head, fractions of
ρU2; L, dimensional length of the computational module, m; l and h, length and width of the computational module,
fractions of D; Nu, Nusselt number determined as dθ ⁄ dn; x and y, axial and radial coordinates, m; Pr, Prandtl number,
Pr = cpµ ⁄ λ; p, pressure related to the double kinetic head, fractions of ρU2; Re, Reynolds number, Re = ρUD ⁄ µ; r,
radius-vector, m; s, s

_
, and n, coordinates measured along the contour of the body about which fluid flows along the

length of the perimeter and on the normal to it, m; T, temperature, K; U, mean-mass velocity, m/sec; v, velocity vector,
m/sec; α, thermal diffusivity, m2/sec; βT, mean-mass temperature gradient; λ, heat-conductivity coefficient, W/(m⋅K); µ,
viscosity, Pa⋅sec; θ, dimensionless temperature; ρ, density, kg/m3; ∇ , Hamiltonian. Subscripts: inlet, parameters in the
inlet cross section; outlet, parameters in the outlet cross section; m, averaging over the cylinder parameter; w, perimeters
on the wall; b.t, mean-mass temperature; *, characteristic integral temperature in the absence of separation equal to the
mean-mass temperature; overscribed bar, dimensionless quantity expressed in fractions of the cylinder perimeter; old and
new, values of a parameter in previous and subsequent iterations.
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